User-Friendly Functional Programming for Web Mashups

Rob Ennals

David Gay

Intel Research Berkeley
2150 Shattuck Avenue, Penthouse Suite
Berkeley, CA 94704

{robert.ennals,david.e.gay}@intel.com

Abstract

MashMaker is a web-based tool that makes it easy for a normal
user to create web mashups by browsing around, without needing
to type, or plan in advance what they want to do.

Like a web browser, Mashmaker allows users to create mashups
by browsing, rather than writing code, and allows users to book-
mark interesting things they find, forming new widgets — reusable
mashup fragments. Like a spreadsheet, MashMaker mixes program
and data and allows ad-hoc unstructured editing of programs

MashMaker is also a modern functional programming language
with non-side effecting expressions, higher order functions, and
lazy evaluation. MashMaker programs can be manipulated either
textually, or through an interactive tree representation, in which a
program is presented together with the values it produces.

In order to cope with this unusual domain, MashMaker contains
a number of deviations from normal function languages. The most
notable of these is that, in order to allow the programmer to write
programs directrly on their data, all data is stored in a single tree,
and evaluation of an expression always takes place at a specific
point in this tree, which also functions as its scope.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Very high-level languages; H.4.3 [Information Systems Ap-
plications]: Information Browsers

General Terms Languages, Human Factors, Design, Manage-
ment

Keywords Mashup, web, end-user, browser

1. Introduction

There has recently been lots of interest in so called “mashup sites”
— web sites that combine information, processing, or visualiza-
tions from several web sites to provide information the user could
not easily obtain by manually browsing the base web sites sepa-
rately. One of the first such sites was HousingMaps.com, which
uses a map from Google Maps to visualize houses available for
rent on Craigslist.org. Other examples include WeatherBonk.com
which combines various sources of information about weather, Bid-
Nearby.com which finds items being sold nearby on sites such
as EBay.com and Craigslist.org, DiggDot.com which combines

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’07 October 1-3, 2007, Freiburg, Germany.

Copyright © 2007 ACM 978-1-59593-815-2/07/0010. . . $5.00

Digg.com with Slashdot.org, and WikiMapia.com which combines
WikiPedia.org with Google Maps to provide information about
physical locations. At the time of writing, ProgrammableWeb.com
lists around 2,100 known mashup sites and the number is growing
rapidly.

While there are a large number of mashup sites in existence,
there are many more that could usefully be created. For example,
as far as the authors are aware, no existing mashup site can answer
any of the following questions':

e Which of these houses on Craigslist has lots of good restaurants
nearby according to Yelp, and would be less than a 30 minute
commute to work according to Google Maps?

e Which of these events on Upcoming clash with things on my
Google Calendar?

e How much would each of these recipes from Epicurious cost to
make if I bought the ingredients at Safeway?

e How much of my weekly expenditure according to Bank of
America goes to companies who donate money to political
parties I don’t like according to OpenSecrets?

e What is the best route through town according to GoogleMaps
that allows me to visit highly rated shops according to Yelp that
sell suggested Christmas presents appropriate for each of my
friends according to FindGift?

It seems reasonable to assume the number of such useful ques-
tions users might ask is huge. New web sites, containing new infor-
mation, appear on the web every day, and the number of possible
ways of combining them is huge, particularly when one considers
the affect of combining three, or four, or more different web sites
to answer a question. At the time of writing, ProgrammableWeb
lists over 450 web sites with published APIs intended to be used
by mashups, and millions more web sites can be used via scrap-
ing (Schrenk 2007).

If each mashup site were only able to answer a single question,
based on a fixed set of source web sites, then it seems the number
of mashup sites needed would be impractical — both for the pro-
grammers who create them, and the users who have to find them.
The obvious solution seems to be generic mashup sites that allow
end users to easily combine information from multiple web sites to
answer a wide range of questions. Indeed several groups have built
such generic mashup creation sites (see Section 5).

In this paper, we describe MashMaker, a tool that makes it easy
to create mashups, for users ranging from naive to expert. The

LIf such a mashup site does exist then that merely goes to underscore one
of our other points — having such a large number of mashup sites makes it
very hard to find a site that can answer a specific question.

www.manaraa.com

design of Mashmaker is guided by a number of principles that
support this goal:

e Program as you browse: creation of mashups should be viewed
as an extension of the normal web browsing habits.

e Direct manipulation: users should be able to work directly on
the data that they are interested in, without having to think about
abstract concepts such as programs.

e [east surprise: local changes should produce local effects.

e Pay as you go: unskilled users should be able to gain some
benefit with very little effort, but more skilled users should be
able to do powerful things.

e Code sharing: mashups, and elements used to create mashups
should be shared across users.

MashMaker is a combination of a custom functional program-
ming language and a web-based user interface. We believe mashups
are an excellent application domain for a programming language.
Moreover, many web sites can be modeled as functions from
form parameters to structured results. As a result, the majority
of mashups combine side-effect-free queries and list manipulation,
making them an excellent application domain for a functional pro-
gramming language.

In addition to functional languages, Mashmaker draws inspira-
tion from spreadsheets, web browsers, and file systems. Time has
shown that these are all metaphors that normal users are able to use
productively, and as a result, all three have been very successful.
We explain in Section 2 how each of these tools has influenced the
design of MashMaker, in ways that support the principles outlined
above.

1.1 The Language and the Interface

The heart of MashMaker is a functional programming language.
A simplified grammar for this language is given in Figure 1.
MashMaker has several significant differences from previous func-
tional languages. Most of these differences stem from the fact that
the MashMaker language is designed to be accessed through a
spreadsheet-style user interface, rather than as a textual program.

Like a spreadsheet, MashMaker stores every value that is com-
puted in a single, central data structure (in this case a tree). There
are no intermediate values that get thrown away. This tree contains
every intermediate value that was computed on the way to produc-
ing the final result. Even the values computed internally by a func-
tion can be made visible by expanding the function call.

MashMaker has no concept of a scope, or of a local variable. An
expression is evaluated at a specific location in the data tree, and all
variable references refer to fields at the current location. This is
again similar to a spreadsheet, in which cell references are relative
to the current location, and temporary values are stored directly in
the data.

The language also has some more conventional features: it is
dynamically typed, function arguments are bound by name rather
than order, evaluation is lazy, and functions are first class values.
We describe the MashMaker language in more detail in Section 3.

The novel features of MashMaker are not just in the core lan-
guage, but also in the way that we expose this language through a
user interface. In particular:

e MashMaker’s tree view shows the value that the current expres-
sion evaluates to. Each node in this tree contains an internal
reference back to the subexpression that defined that node. This
is made practical by the fact that the MashMaker language con-
siders each evaluation to have a logical position in the data tree.
(Section 2.3).

Value
v o= ¢ constant (file)
|0 empty directory
| vx (k—wv) extension
| s,A(xo...xn).e.x closure with body e, env s
and result selector x
Subnode Key
k = =z Property with name x
| e Unnamed child
Expression
e = ¢ constant
|0 empty directory
| ex(gr—e) extension
| XMzo...zn).ex lambda
| el(e function application
| this current context
| p link to another node
| X global
Extension Path
q == k new subnode
| *x.gq for all children
| z.gq inside property x
Reference Path
p = x variable
| z.p inside property x
| lp inside parent
Scope
S = Vp:i...:Up stack of parent dir values v

Figure 1. Simplified grammar for the MashMaker core language

e MashMaker allows operations such as map, fold, and filter to
be applied through direct manipulation of data (Section 2.3.1).

e MashMaker automatically suggests functions that a user might
apply to their data, based on the functions that other users have
applied to similar data. This allows less skilled users to create
mashups simply by clicking on suggestions, without having to
do any programming or having to think about what websites
might connect together (Section 2.4).

e MashMaker’s user interface allows users to write expressions
in a simplified form. This form allows users to avoid quoting
constants, and automatically infers arguments for lambda ex-
pressions (Section 3.5).

e All data is “live”, meaning that functions automatically recom-
pute their values in response to changing data (Section 3.6).

e MashMaker bundles functions up together with associated
metadata to form “widgets” — reusable mashup fragments
(Section 2.4).

e Users can interact with MashMaker at a number of different
levels making it useful for anyone from a complete beginner to
a skilled programmer (Section 2.5).
1.2 Why this Paper is Interesting
This paper makes several interesting and novel contributions:

e We propose the use of a functional language for the creation of
web mashups.

www.manaraa.com

z MashMaker - Firefox [==]x] z MashMaker - Firefox [==lx]
Eile Edit View History Bookmarks Tools Help & File Edit View History Bookmarks Tools Help

(i Add to MashMaker [l Add to MashMaker
= Data ~ Widgets = Data ~ Widgets

= &y craigslist housing: ...
uri: [visual]
. One Bedroom - All Utilities Included - Pet
Friendly
title:One Bedroom - All Utilities
Included - Pet Friendly

address: 2122 Santa Clara Ave. at [spam[I™ Tdiscussion pest of[] () google map: [visual] @, «’ﬂ@j Traffic | Map || Saelite 1{Hi bria 1§
Willow and Walnut Alameda CA US % P Y
address: 2122 Santa Clara Ave. at L S > 2 £
price:1275 email this posting to a friend Willow and Walnut Alameda CA US > g ,‘75'“ EF 2
» area: (alameda) » price:1275 B ’b% 2
T oosnn) - 28 5.
ur: visuan $1275 One Bedroom - All Utilities area: (alameda) pron W B I B
. Aamea o
= = Rare jordan Park Listing Included - Pet Friendly (alameda) uri: [isual] H g e A Sadag @5
o title:Rare Jordan Park Listing i = o Rare Jordan Park Listing 550 ey

address: parker at california s.f. ca US

» price:4200 Date: 2007-04-06, 2:21AM PDT [5] google map: [visual] i 4 o Tl

bedrooms:3 adaress: parker at california s.f. ca US @ & Alameda 4

area: (laurel hts / presidio) price:4200 R % 15‘ & A
o url: [visual] One bedroom in elegant older building. Lots of windows. All » bedrooms:3 = Z A

| s.f. bayarea craigslist > east bay > apts/housing for rent >

One Bedroom - All Utilities Included - Pet Friendly

Stating a discriminatory preference in a housing post is illega

please flag with care : [miscategorized|] [pronibited|]

Reply to: otsprop@yahoo.com

utilities included. Approximately 775 sq. ft. We are a very

£ craigslist housing: ...] “@gmail.com | Saved Locations | Help | My Account | Sign out

Web Images Video News Maps more »

Got)gle [foc: 2122 Santa Clara Ave. at Willow and Walnut Alan

Search the map | Find businesses Get directi

ur: [visual]

. One Bedroom - All Utilities Included - Pet
Friendly
title:One Bedroom - All Utilities
Included - Pet Friendly

& Print [Email es Link to this page

Maps

title:Rare Jordan Park Listing

v

Conral v

» area: (laurel hts / presidio)

+ = DontPay in May! s
Touns Cente,

. urt: [visual]
o

pet friendly building with wonderful residents.

» Beautiful & Quiet House on Full Size lot,
Best Los ALtos neighborhood

Apartment is available immediatley for viewing. Please call =
TJ. at 510.522.5130 to schedule an appointment.

Don't Pay In May!
Beautiful & Quiet House on Full Size lot, oo
.

= * Best Los ALtos neighborhood g l_'_ll mi Shoreing oo
il T Gl =) | e 2n07 Goagle - Map dati £2007 NAVTEQ [Fert8Plee | South San

. = Central Richmond 2 BR/1BA street level
flat for lease.

[«
gl

Done

Done

Figure 2. Craigslist apartment listing imported into MashMaker Figure 3. Using a Google Maps visualization for an apartment

e We propose several changes to the standard functional paradigm,
in order to make such languages more suitable for this domain. @
. . . File Edit View History Bookmarks Tools Help

In particular, we present a model made on tree extension, in

[BEE

MashMaker - Firefox

[Add to MashMaker

which an expression is evaluated with respect to a location in a =Data ~ Widgets
data tree. + % food nearby: [2]
= ¢» craigslist housing: ... 4 And

url: [visual] ma BBC News Headlines

e We demonstrate that this approach is practical, through the
creation of MashMaker, which is, in our opinion?, the first truly
general purpose mashup creation tool that is usable by normal
users. MashMaker is currently undergoing a closed beta test

©One Bedroom - All Utilities Included - Pet Z Count

Friendly £ Craigsist Housing
+ 3 food nearby: ... -
. titie:One Bedroom - All Utilities % Yelp
Included - Pet Friendly

[] google map: [visual]

Find Reviews on Yelp

rogram, and we plan to open it up to the general public soon. it e it Ao e e atr S
-
e e —]

+ url: [visuall i—{_update

Refresh | Copy | Paste | Bookmark as New Widget |

2. The MashMaker Design .

o Don'tPay In May!

Rare Jordan Park Listing

. © Beautiful & Quiet House on Full Size lot,
Best Los ALtos neighborhood

In this section we sketch the overall design of the MashMaker
system, and explain how it draws inspiration from file systems, . = Contral Rchmond 2 BR/LBA street evel

flat for lease...
spreadsheets, and web browsers. .

+ & Cozy studio In Great Adams Point location

» Miraloma Park house for lease...

. © custom fumished studio internet cable ||

[x

2.1 An Illustrative Example

Since MashMaker is quite different from most functional lan-
guages, it is perhaps helpful to set the scene with a walk through of
an actual session using the current version of the MashMaker tool.

Figure 4. Joining Yelp to Craigslist

1. Alice is planning to rent an apartment, so she navigates her
normal web browser to Craigslist.com and has a look at the
apartments listed there. Alice looks at the apartments listed
by Craigslist and would like to know more about them. In

3. MashMaker notices that Craigslist apartments are things that
users have previously displayed on maps, so it provides a button
at the top of the window allowing Alice to add a map to each

particular, she would like to know which apartments have good
restaurants nearby. Since Craigslist can’t do this itself, Alice
realizes she needs to use MashMaker.

. Alice clicks on the “Add to MashMaker” button on her web
browser bookmark bar to launch MashMaker and view the
Craigslist housing web page within the MashMaker proxy-
browser. MashMaker starts up as an AJAX web application,
within Alice’s web browser, hosted by the central MashMaker
webserver (Figure 2). The right hand window shows the web
page Alice is looking at, and the left hand side shows a tree
representation of the web site. In this case, there is a node for
the Craigslist query, with a child node for each apartment. Each
of these apartment nodes has a set of property nodes, expressing
properties of that apartment such as its price and the number of
bedrooms.

apartment. Alice clicks on this button to get a map for each
apartment (Figure 3).

4. Alice would like to see Yelp restaurant reviews near each apart-

ment, but is disappointed to see that MashMaker has not pro-
vided a button to do this automatically. She will thus need to
teach MashMaker about this connection herself.

5. Alice navigates to Yelp and searches for food at an arbitrary

address. When the result of the query appears, she clicks on
“Add to MashMaker” to suck this query page into MashMaker.
The resulting Yelp node is called “food nearby” and contains
nodes for all restaurants near to the specified address.

6. Alice now has both Craigslist and Yelp in her MashMaker

scratch space but they are not yet connected. Alice copies the
Yelp node into one of the apartments®. She then expands the
“form panel” to reveal the form defining the Yelp query, and
changes the “address” field of the Yelp form to be “=address” —

2 Terms such as “truly general purpose” and “usable by normal” are hard to

define formally, so some might disagree with this statement. a reference to the address property of the enclosing apartment

www.manaraa.com

2 MashMaker - Firefox (=)

Eile Edit View History Bookmarks Tools Help
(i Add to MashMaker
= Data

+ 3: food nearby:

¢+ We Suggest : Filter

Search for (e . taco S Near (acore{~|
[food lparker at ca

= &y craigsiist housing: ...
url: [visual]

. = One Bedroom - All Utilties Included - Pet
Friendly

Welcome AboutMe Write a Review Find Reviews Invite Friends ~ Messaging

= o Rare jordan Park Listing

Searching Map for food
Map centered on Parker Ave & California St, San Francisco. CA
Browse this category: Food

title:Rare Jordan Park Listing
= 4 food nearby: ...

o Tawan's Thai Food —

» Assab Eritrean Restaurant Be My Guest Thai Bistro oy

» Restaurant Clementine Category: Tha 951 Clement Stre
San Francisco, CA|
(415) 386-1942

Burma Superstar Neighborhood: Inner Richmand

Mandalay - :
Brothers Restaurant [™is place is a find. When the old Thai restaurant that was here moved out,

, Melisa's Chinese Cuisine

0.8 Miles LILIIIL 34
King of Thai Noodle House 941. Tawan's Thai Food 4403 Geary Boule|
Thal Time Restaurant Category: Thai San Francisco, CA|
Neighborhood: Inner Richmond (415) 751-5175
= Bamboo Vilage °
url: [visual] | very very friendly and creative atmosphere, great selection of food which is a
+ o Uwajmaya
0.4 Miles oono0n -

+ o ThaiTom

4 2. Assab Eritrean Restaurant 2845 Geary Boule| |
o ManekiRestaurant = I San Francisco, CAl~|
Xl I [o]

Done

Figure 5. Yelp displays restaurants near the apartment

2 MashMaker - Firefox [HEE)

Elle Edit View History Bookmarks Tools Help
[Add to MashMaker

@ Data < Widgets

« 3 food nearby:]

= £ craigslist housing: ... Extract Address

url; [visuall Filter
_ = One Bedroom - All Utilities Included - Pet [Google Maps
Friendly Google News
+ 5 food nearby: ... -
Filter

title:One Bedroom - All Utilities
Included - Pet Friendly
[google map: [visuall

address: 2122 Santa Clara Ave. at
Willow and Walnut Alameda CA US

Filter a list of nodes, giving only those nodes
fthat match a given expression

what [=food nearby

price:1275 criteriak [distance < 1 AND rating > 4
|_|Prop name Futer

Add

, area: (alameda)
url: [visual]
+ = Rare Jordan Park Listing

+ = Don'tPay in May! —
search for (e.o. taco Mars) _ Near (addres™|

food [2122 Santa

Welcome AboutMe Writea Review Find Reviews Invite Friends ~Messaging

. ® Beautiful & Quiet House on Full Size lot,
Best Los ALtos neighborhood

. @ Central Richmond 2 BR/1BA street level
flat for lease...

Real People. Real Reviews™

+ o Miraloma Park house for lease...
o Cozy studio in Great Adams Point location Searching Map for food

custom furnished studio internet cable || Map centered on 2122 Santa Clara Ave, Alameda, CA
utiltias and mara inclidad =Y &rowse this category: Food 4

Done

Figure 6. Filtering apartments using a lambda expression

node (Figure 4). Each apartment now has a “food nearby” prop-
erty, showing the restaurants near to that apartment (Figure 5).

7. Now that Alice has created this “food nearby” node, Mash-
Maker learns that this is a property that users might want to
define for Craigslist apartments. In the future, if another user
views a Craigslist apartment, MashMaker will provide a “food
nearby” button to allow other users to add this same property.

8. Currently “food nearby” shows all restaurants near to each
apartment, but Alice is picky, and so is only interested in highly
rated restaurants very near to the apartment. MashMaker knows
that previous users have applied a filter operation to Yelp list-
ings, so it suggests that Alice apply a filter operation here (Fig-
ure 5). Alice clicks on this button and types “distance < 1
AND rating > 4” as the condition* (Figure 6). Alice could
alternatively have used an interactive user interface to compose
this query. Alice renames the result of the filter to “good restau-
rants within walking distance”.

3 This corresponds to a “map” operation (Section 2.3.1).

4 This is actually a lambda expression, despite the absence of lambda sym-
bol or explicit arguments (Section 3.5).

9. This new property is dependent on the existence of a “food
nearby” property, and so will not be suggested by MashMaker
for Craigslist apartments that lack this property.” Thinking that
this property might be useful for other users searching for
apartments on Craigslist, Alice decides to bundle up the new
property, together with the other properties it depends on, as a
new widget. To do this, she clicks “bookmark as new widget”,
and tells MashMaker which of the properties that this property
depends on should be considered to be arguments, rather than
being internal to the widget. In this case, the address is an
argument, and “food nearby” is internal. In the future, when
another user browses a Craigslist apartment, “good restaurants
within walking distance” may be suggested to them.

10. To allow themselves to get an overall view of the quality of each
apartment on offer, Alice adds a number of additional properties
(commute time to work, crime level, average income) and uses
the “calculator” widget to define a scoring metric by combining
these features. She then sorts all the data by this metric.

Section 3.2 shows the functional program that this editing ses-
sion created.

2.2 Learning from File Systems

Like a file system, MashMaker presents all data as a tree (Figure 2).
All nodes in this tree are immutable. The underlying implementa-
tion uses sharing to avoid duplicating data, but users are encouraged
to think of their data as being in a tree.

Like a file system, each node either has its own content (a file),
or subnodes (a directory). The content can be of arbitrary type, for
example, some text, a number, an expression, an image, a URL.
Each subnode is either a property with an explicit name, or a child
with no name. It is assumed that all children will represent things of
roughly equivalent type, whereas the types of properties will vary,
and correspond to their names.

MashMaker’s tree view shows a text summary for each node.
If the node is a named property, then this summary is preceded
by the property name. The summary for a simple file node is a
text summary of the content (e.g. the text for a text node). The
summary for a directory node is a user-configurable combination
of the summaries for its properties — by default the summary of
the first property.

MashMaker’s right hand pane shows a visualization of the se-
lected node. If the node is a file, then this will be a visual repre-
sentation of the file’s data. In some cases, this will be a computed
representation of other data in the tree, for example a map, a graph,
or a table. If the node’s content is a URL then that URL is shown.
Similarly, text, images, and other visualizations can be shown in
this panel..

Figure 1 shows the notation for such tree values in MashMaker’s
underlying language. We write) to denote an empty directory, and
v X (k — ') to denote the directory that results from extending
the directory v with a new subnode v’ — where k is o if the subnode
is a child and a property name if the subnode is a property. As the
underlying language is purely functional, all dependencies between
nodes are explicit, preserving the principle of least surprise.

For convenience, one can write [ko — vo, ..., kn — vyn] as an
abbreviation for X (ko +— vg) X ... X (kn — vy). To illustrate the
way this notation works, here is the notation for the value shown in
Figure 5:

5 See Section 2.4 to see why.

www.manaraa.com

food nearby +— ...,
craigslist housing — |
url — ...,
o |
title — “Rare Jordan Park Listing”,
food nearby — |
o — {title — “Tawan’s Thai Food”, ...},
o — {title — “Assab Eritrean ...”, .. .}
I,
google map — ...,...
l,--.
|
]

Somewhat unusually for a programming language, but entirely
in keeping with a file system, MashMaker allows identifier names
to contain spaces.

MashMaker’s data representation is also heavily influenced by
XMLS. In particular, the idea of distinguishing between properties
and children is taken from XML. The key differences are that,
unlike XML, MashMaker allows properties to be arbitrary subtrees,
rather than just simple text, and MashMaker nodes do not have tag
names. We believe that this representation is simpler for users to
understand than XML, but it is close enough to XML that it is easy
to encode each in the other.

2.3 Learning from Spreadsheets

One of the key principles behind mashmaker is that users should
create mashups through “direct manipulation” of their data, rather
than writing an abstract program. To support this goal, we have
taken much inspiration from spreadsheets.

Spreadsheets have achieved remarkable success in allowing nor-
mal users to write relatively complicated programs. One of the key
features that has allowed spreadsheets to do this is their avoidance
of unnecessary separation between a program and the data it is
working with. In a conventional programming language, the pro-
grammer writes a program in isolation of any argument data. As
they write this function, they must imagine what it will do with ar-
guments they might give it. By contrast, a spreadsheet avoids this
separation by allowing the programmer to apply operations directly
to a specific piece of data and then copying the operation to other
data if it seems to work.

MashMaker borrows six key features from spreadsheets:

e Program and data mixed in one central workspace.

e All data is stored explicitly in the workspace. There are no
“local variables”.

e An expression is evaluated at a specific location, and refers to
other data relative to its current location.

e Map and fold are described through direct manipulation of data,
rather than using abstract functions.

e Text entered by a user is assumed to be a constant, unless
proceeded by “="".

e Expressions re-evaluate automatically in response to changing
arguments’ .

6 Originally our plan was to use XML as the data model, but we eventually
decided that a simplified model would be easier for users.

7 There are some systems issue here. In particular, how does one determine
that a web site has changed, and how does one avoid querying a web site
too often? However these are off-topic for this paper, so we will not discuss
them further.

The tree view on the left side of the MashMaker window shows
the value that the user’s current program evaluates to. Each node
is either a defined node, meaning that there is a user-specified
expression defining its value, or it is a result node, meaning that it
is part of the result of evaluating a parent defined node. In the user
interface, result nodes have a green ball as their icon while defined
nodes have an icon corresponding to the function that defines them.
A defined node contains an internal reference to the expression that
defines it, allowing the user to easily edit this expression. Each
expression is evaluated by referring to the values of other nodes
near it in the tree.

Just as a spreadsheet allows a user to edit a formula using
the formula bar, but avoids displaying the formula in the normal
display, MashMaker allows a user to edit the form arguments for a
defined node using the form panel which pops down from the top
of the right hand side when a user clicks on its icon. For advanced
users, MashMaker also allows the user to turn on a spreadsheet-
style formula bar, which displays the current expression textually,
in MashMaker’s underlying functional language.

2.3.1 Map and Fold

An appealing feature of spreadsheets is the way they allow a user
to map a single expression over a collection of objects by simply
writing a formula in one cell, and then copying the expression to all
data rows below. This approach allows the user to easily see how
their expression is evaluated for each data element. MashMaker
takes a similar approach. If a user adds a new property to a node,
then similarly defined properties are automatically created for all
sibling nodes. For example, in Section 2.1, when the user added a
google map to one apartment, a map was automatically added to
all other apartments. All these expressions use the same defining
expression, and when the user uses the form panel to change the
arguments they change the arguments for all the other replicas too.
As in a spreadsheet, a MashMaker user can easily look at a specific
application of the expression to some data and see directly how it
evaluates.

Similarly, spreadsheets provide an easy way for users to fold an
operation over a collection of objects. fold is infamous within the
functional programming community as being a difficult function
for beginners; they either can’t remember the argument order, or
they have difficulty thinking about exactly what a function will do
when folded over a collection of data. However those same users
have little difficulty performing fold operations in a spreadsheet.
In a spreadsheet, all a user has to do to fold their function over
data rather than simply map it is write an expression that refers to
the cell above, and then read out the final value from the bottom.
Following this example, MashMaker allows users to write fold-like
operations using the built in “prev” property to refer to the previous
sibling. If there is no previous sibling then “prev” returns the value
of the user-defined “init” property, or an empty value if this is not
defined.

MashMaker also appropriates spreadsheet syntax for distin-
guishing constants from expressions within the user interface. By
default, any text entered by a user is assumed to be a string con-
stant, unless it is proceeded by “=". We chose this default partly
because it is what users are familiar with and partly to avoid the
need for beginning users to learn about expressions before they can
edit form arguments. This feature is not part of the textual repre-
sentation of the MashMaker language — it is simply part of the
user interface.

2.4 Learning from Web Browsers

Another guiding principle of MashMaker is “program as you
browse”, meaning that creating a mashup should feel like the nor-
mal web browsing process.

www.manaraa.com

The web browser is perhaps the most successful user interface
of modern times. This simple interface allows users to find infor-
mation and perform sophisticated queries by merely following a
sequence of links and occasionally typing data into forms.

MashMaker follows this model as much as possible. When a
user is looking at a particular node, MashMaker will automatically
suggest additional functions that they might want to apply by pro-
viding buttons across the top of the view pane (Figure 5). Clicking
on one of these buttons will insert a new node whose defining ex-
pression extracts data from the data already available (e.g. “food
nearby” finds its address argument from the existing address prop-
erty).

The expectation is that most users of MashMaker will never use
the keyboard or expand the widget pane. Instead they will explore
their data entirely by clicking on MashMaker suggestions. In effect,
MashMaker extends the web browsing experience by adding new
links that users can follow.

The suggestions that MashMaker makes are derived from ob-
servations of functions that other users have previously applied
to similar-looking data, following the code sharing principle.
For example, in Section 2.1, once one user had added a node
to a Craigslist apartment whose defining expression was food
nearby = Yelp([address = address, what = "food"]),
MashMaker will automatically suggest adding a node with the
same definition for all other Craigslist apartments.

Another behavior that MashMaker borrows from web browsers
is bookmarks. If a user is using a web browser, they can use book-
marks to remember interesting pages that they have found, or to
share an interesting page with friends. The equivalent behavior in
MashMaker is user-defined widgets. To create a user defined wid-
get, the user navigates to an interesting result that they would like
to remember for later or share with friends and clicks “bookmark
as new widget” (Figure 4). MashMaker will then prompt the user to
select which of the nodes that the result depends on should be con-
sidered arguments and which should be considered internal to the
function. Non-expert users will typically opt for the default — all
nodes the result depends on are internal, causing the entire mashup
to be bookmarked, just as if the user had bookmarked a normal web
page.

This approach allows users to experiment with their function
on real data before abstracting it as a function. Perhaps more im-
portantly, it allows users to browse around aimlessly, looking for
something interesting, without necessarily having to think in ad-
vance that they might be going to create a function at the end. Even
when they do create a function, our intention is that they think of
what they are doing as bookmarking an interesting discovery, rather
than writing a function.

2.5 Multi-Level MashMaking

We have designed MashMaker with the intention that it should be
usable by anyone from a complete novice to an expert programmer
(following the “pay as you go” principle). In particular, we antici-
pate that users will use MashMaker at the following levels, where
each level requires a little more skill from the user and allows the
user to do more powerful things:

1. Basic Users: Never unfold the widget panel. They explore
their data purely by clicking on “Add to MashMaker” in their
browser, and clicking on suggestion buttons to add enhance-
ments to their data. Basic users will sometimes bookmark
things they find, using the default bookmark settings (Sec-
tion 2.4). Basic users do not even have to see the tree on the
left, since all the information they need is visible in the view
pane on the right.

2. Normal Users: Occasionally expand the widget panel to edit
form parameters. The changes they make flow through into the
suggestions made to all users.

3. Skilled Users: Connect up new sites that have not previously
been connected, using copy and paste and simple expressions
that refer to other properties.

4. Semi-Expert Users: Use semi-automated scraper-creation tools
(not yet written) to create scraper widgets for new web sites.

5. Expert Users: Write complex expressions directly in Mash-
Maker’s core language.

6. Gurus: Teach MashMaker how to understand the content of new
websites, either by uploading a hand-written XML description
(the current state), or by using an interactive tool (the future).

We expect that each category will contain an order of magnitude
fewer people than the previous category. However, even though
the number of highly skilled users may be small, their presence
is essential since it is they who import the web sites and write the
functions that less skilled users later use.

3. The MashMaker Language

In the previous sections we have explained the general model of
how MashMaker works and the mental model that it presents to
a user. In this section we will describe in more detail the func-
tional programming language that is at the heart of MashMaker,
and in particular the concept of directories and tree extension (Sec-
tion 3.2).

3.1 Core Syntax

Figure 1 gives the grammar for expressions in MashMaker’s core
language. This grammar deals with a simplified version of the full
MashMaker language. In particular we omit the expression forms
for special built-in functions such as prev.

Values were described in Section 2.2. A value is either a con-
stant file value (of arbitrary type), a directory with property and
child subnodes, or a lambda expression. A directory is either empty,
or is a smaller directory that has been extended with an additional
subnode®. It is legal for a directory to contain multiple properties
with the same name, however one will only be able to look up the
value of the last one.

MashMaker is dynamically typed, in common with the Lisp
family of languages, and, of course, spreadsheets. If a dynamic type
error occurs then the erroneous node’s text summary and view pane
will explain what went wrong.

An expression is evaluated with respect to its location in the data
tree. The location is represented as a stack of parent values, each of
which is a directory. If an expression looks up a variable, the lookup
is relative to the current location. The innermost directory value in
the location is known as the context.

Expressions take the following forms:

e A literal constant ¢
e An empty directory ()

e An extension e X (¢ + €’) adds a new subnode to e. e is
required to evaluate to a directory, and q is an extension path
that says where the new subnode should appear. The expression
e’ is evaluated at e, so ¢’ can refer to any properties in the
directory that e evaluates to. We discuss extensions in more
detail in Section 3.2.

8 Note that, unlike normal list concatenation, we add new elements to the
end, rather than the beginning of a directory.

www.manaraa.com

For convenience, one can write [go — €o, ..., ¢n — €n] as an
abbreviation for () X (go — €g) X ... X (gn > en).

A lambda expression A(zo . . . Z»).e.x defines a closure value
whose arguments have names o . . . ©,, and whose body is the
expression e. The return value is computed by evaluating e to a
directory and then selecting the property called x. MashMaker
identifies function arguments by their label, rather than their
order.

For syntactic convenience, one can omit the final “.” part of a
lambda expression, meaning that the result is the entire value,
rather than some property of it.

A function application e (e’) applies e to €’. e must evaluate to
a function and e’ must evaluate to a directory with properties
matching the names of all the arguments of e.

Writing “this”, allows an expression to refer directly to the
current location as a directory value.

A path reference p looks up a property relative to the current
location. By default, only properties in the current context are
matched, but the !x form allows one to search the parent loca-
tions.

3.2 Tree Extensions

The key new construct in the MashMaker language is the tree
extension:

!
ex g e

This construct is key to the connection between the core Mash-
Maker language and the MashMaker user interface, since it denotes
the action of adding new computed nodes to the data tree. In this
construct, e is the base of the current tree, ¢ is a path to the position
at which the user has inserted a new node, and ¢’ is the expression
used to define the new node.

The path ¢ can include the wildcard symbol, “*”, meaning that
the rest of the path should be applied to all children. In fact, there is
no way to add a new subnode for just one child node. If one wishes
to add a subnode to one child node then one must add it to all of
them.

Here is the simple expression that the user created interactively
in the example in Section 2.1.

houses — Craigslist Housing([area — sfbay]),
houses.*.map — Google Maps([address — address)),
food nearby — Yelp([what — “food”, where — .. .]),
houses.*.food nearby +—

Yelp([what — “food”, where — address]),
houses.*.good food nearby +—

Filter([what — food nearby, how —

A(distance, rating). (distance < 1) A (rating > 5)]),

Here, we see that the user took Craigslist Housing and extended
it to add a new defined node called “map” inside each apartment.
The value of each map was computed with reference to the “ad-
dress” property of that apartment. The user also added an additional
top-level node called “food nearby” and defined “food nearby” and
“good food nearby” nodes for each apartment. Within the user in-
terface, each of these defined nodes contains an internal reference
to the program subexpression that defines it, allowing the user to
easily edit function arguments.

The user in that example also defined the following global function:

Good Food Nearby = X(address).(

food nearby — Yelp([what — “food”, where — address]),
good food nearby — Filter([what — food nearby, how +—
A(distance, rating). (distance < 1) A (rating > 5)]),
].good food nearby)

We can see that this function was created by copying the “food
nearby” and “good food nearby” properties out of the scratch-space
data tree, recording the fact that “address” was an external input,
and noting that “good food nearby” is the result value.

3.3 Semantics

Figure 7 gives a big-step operational semantics for strict evaluation

of MashMaker expressions. The real semantics for MashMaker is

lazy, however this strict semantics allows us to more easily present

language constructs such as tree extension, without the distraction

of lazy evaluation. We discuss lazy evaluation more in Section 3.4.
The evaluation relation is of the following form:

s,edv
where

e s is the location at which the expression is evaluated. This is a
stack of parent values, each of which is a directory value. The
innermost parent value is known as the context. We write v : s
to denote a location with context v on top of the rest of the
location.

® ¢ is the expression being evaluated
e v is the value that e evaluates to in the location s

Most of these rules should be easy to follow:

® (CONST) and (EMPTY) are already values, and so do nothing

e (EXTEND-NEW) adds a new subnode to a directory. The new
node is evaluated in a context that includes all previous proper-
ties, but not any properties added to the directory subsequently.

(EXTEND-EMPTY), (EXTEND-ALL) and (EXTEND-SKIP)
add an extension to all child nodes. (EXTEND-SKIP) skips
over property nodes, (EXTEND-ALL) extends the last child
node, and then recursively extends the others.
(EXTEND-PROPI) and (EXTEND-PROP2) extend a named
property. (EXTEND-PROP1) matches the last property and ex-
tends it. (EXTEND-PROP?2) skips over a non-matching prop-
erty.

e (LAM) builds a closure, stashing the current location as the
environment.

(APP) applies e to €’. e is evaluated to a closure with body
e”’. €' is evaluated to a directory v”/. A new context is built by
extending the closure environment with properties from v”’ that
match the closure arguments. The closure body e” is evaluated
in this context and the property x is selected from the result.

e (THIS) simply grabs the current context value.

e (VAR), (FIELD), and (PARENT) follow a path from the current
location.

3.4 Lazy Evaluation

Like Haskell (Peyton Jones 2003b), all MashMaker expressions are
evaluated lazily. The current consensus in the programming lan-
guage community seems to now be that lazy evaluation is the wrong
evaluation model for conventional programming languages (Peyton
Jones 2003a). This is because the bookkeeping overhead of lazy

www.manaraa.com

(EXTEND-NEW)

(CONST) (EMPTY)

s,ed v

v s e v

(EXTEND-EMPTY)

s,e{l 0

5,040

s,clc

(EXTEND-ALL)

syedb v1 X (09— v2) 5,01 X %.q — € | v]

s,ex ke v x (k)

/ /
V1 1 8,V2 X g Uy

s,ex s.qgr—e 0

(EXTEND-SKIP)

s,edv1 X (z+— v2) 5,01 X %.qg — € | v]

s,eX x.qg— e | v] x (8 vh)

(EXTEND-PROP1)

s,edbvi X (z — v2) v1:S,va X g e | vh

s,e X x.q— € | v] X (z— va)

(EXTEND-PROP2)
/
s,edb v X (' —)

! !
s,v1 X x.q+— e vy

z#

s,e X z.g+— e | v X (T v3)

(LAM)

s,ex x.q— e vl x (2 — v2)

$,Mxo ... xn).ex | (s, M(x0 ... 2n).€.7)

(APP)
s,e (V8 Ao ... 1) 1)
s,e’ o’ (w0 —vy") €0 ... (zn = vy) €0 (V' % (o — vy) X ... X (T = v) s 8, Lo " s e v
s,e(e) Jv
(VAR) (FIELD) (PARENT)
(THIS) (x —wv) e (z—") e v v s, plo s,plv
v:s,this | v - y Vi
v:is,z o v :s,zp v v s lplo

Figure 7. Operational semantics for strict MashMaker evaluation

evaluation makes programs run slowly, the complex evaluation be-
havior makes performance hard to predict, and programmers often
have to battle with space leaks due to long chains of lazy thunks.

MashMaker, however, is not a conventional programming lan-
guage. We believe that the unusual application domain that Mash-
Maker works in makes lazy evaluation highly appropriate. In par-
ticular:

e In the case of web mashups, the bookkeeping cost of remember-
ing how to evaluate something is tiny compared to the massive
cost of fetching and scraping a web site, thus it is only neces-
sary for a very small number of expressions to be unneeded for
the bookkeeping cost to be more than paid back.

Even if fetching a web site was cheap, it is important for us to
minimize the number of queries we make to a remote server, to
avoid overwhelming a server (Section 3.7).

Typical mashup programs work with relatively small amounts
of data that are not directly presented to the user, and so space
leaks are far less of a problem.

Many web sites are already essentially lazy. For example when
one makes a search using Google, it does not return all results
in one page, but instead produces results lazily as one presses
the “next” buttons.

MashMaker’s lazy evaluation works largely as one would ex-
pect. The value of a node is only evaluated when it is either de-
manded by the evaluation of another node, or the user attempts to
view it through the graphical interface.

3.5 Lambda Expressions in the User Interface

The MashMaker user interface has somewhat unusual treatment
of lambda expressions. While the syntax in the underlying core
language is fairly conventional, with lambda expressions explicitly

marked as such and arguments explicitly listed, the user interface
attempts to hide this from users as much as possible.

Although MashMaker is dynamically typed, the Widget meta-
data for a function includes a flag for each argument saying whether
it is a closure. If an argument is a closure then the forms UI inter-
prets text entered for that argument a little differently than for non-
closure arguments. Any text entered is assumed to be the body of a
lambda expression, and any variables in the expression that are not
bound at the current location are assumed to be lambda arguments.
Advanced users can tell that this alternative text handling is in use
by noticing a A icon next to the argument text box.

3.6 Live Data

All data in MashMaker is /ive, meaning that it may change over
time and will react to changes in other parts of the data tree. If a
tree is the result of a web query, then this tree will update over
time, as the source web site changes 2,

The MashMaker language is designed to handle changing data
well. In particular, since MashMaker overlays extensions over gen-
erated data (Section 3.2), rather than modifying it in-place, these
extensions will be automatically applied to new versions of the
underlying data. Also, since the MashMaker extension construct
automatically adds new properties to all children of a node, these
properties will also apply to any new children that are added to the
tree.

3.7 Throttling

One important practical issue that has to be dealt with whenever
one creates a mashup is the need to avoid placing too much load on
the web sites supplying data. If one has an agreement with the web
site provider then it is likely to specify a maximum load, and if one

9 Either by polling the web site at a fixed frequency, or waiting until the user
asks for a refresh.

www.manaraa.com

does not have an explicit agreement then placing too much load on
a server could cause the owners to block the mashup system’s IP
address.

As aresult of this, it is necessary for MashMaker to throttle the
rate at which requests can be made to external web sites. Indeed this
rate is one of the primary issues that determines the performance of
a Mashup, since if a mashup needs to make too many requests, then
it will have to slow itself down in order to avoid sending requests
too rapidly. This performance restriction has motivated MashMaker
not only to use lazy evaluation (Section 3.4), but also to use a
number of other tricks (not discussed in this paper) to minimize the
number of requests that need to be made to external web servers.

3.8 When Websites turn Bad

One limitation of MashMaker, as with most other tools that scrape
information from web sites, is that mashups can break if the under-
lying websites change. If a website changes the structure of the data
it produces, or changes its HTML such that the current scraper no
longer understands it, then mashups that depend on this data will
no longer function correctly. In the long term, we hope this this
problem will become less severe as websites increasingly publish
semantic information in well defined data formats.

More generally, MashMaker is not intended to be used for
“mission critical” applications where data integrity is essential.
Instead, its focus is on applications where it is more important to
be able to produce interesting data than to be certain that the data
is correct.

4. Evaluating Usability

Following Peyton Jones et al. (2003), we evaluate the usability of
MashMaker using the Cognitive Dimensions of Notations (CDs)
framework (Blackwell et al. 2001). CDs provide a vocabulary that
enumerates concepts important to users who are engaged in pro-
gramming tasks. While evaluation against cognitive dimensions is
subjective, and is not a substitute for thorough user testing, these
concepts have been shown over time to be important to human
problem solving and it is important to consider each when design-
ing a usable interface. We list the cognitive dimensions in Figure 8
and evaluate MashMaker against these dimensions below:

e Abstraction Gradient: MashMaker can be used at a number
of different levels of abstraction, allowing use by users rang-
ing from complete beginner to experienced programmer (Sec-
tion 2.5).

Consistency: New widgets are created using the same mecha-
nism as creating simple expressions. All work in MashMaker
is done using the same simple mechanism of applying widgets
and setting form parameters.

Error Proneness: Unlike normal spreadsheets, MashMaker
automatically ensures that when a user adds a property to a set
of children the defining expression is identical for all children.

Hidden Dependencies and Role Expressiveness: When a
node is selected, all dependent or source nodes are automat-
ically highlighted to make it clear that there is a dependency.

Premature Commitment: Users do not have to decide in ad-
vance what they are looking for, but instead can wander aim-
lessly, looking for something useful. If they find something they
like, they can bookmark it as a new function widget, but they
need not decide in advance that this is what they are going to
do.

Progressive Evaluation: There is no requirement that a pro-
gram be in any sense “complete” in order for the user to look at
its result. Similarly, like a spreadsheet, if some evaluations fail

Abstraction gra- | What are the minimum and maximum lev-

dient els of abstraction? Can fragments be encap-
sulated?
Consistency When some of the language has been learnt,

how much of the rest can be inferred?
Does the design of the notation induce
‘careless mistakes’?

Is every dependency overtly indicated in
both directions? Is the indication perceptual
or only symbolic?

Do programmers have to make decisions

Error-proneness

Hidden depen-
dencies

Premature com-

mitment before they have the information they need?

Progressive Can a partially-complete program be exe-

evaluation cuted to obtain feedback on “how am I do-
ing”?

Role- Can the reader see how each component of

expressiveness a program relates to the whole?

Viscosity How much effort is required to perform a

single change?

Is every part of the code simultaneously vis-
ible (assuming a large enough display), or
is it at least possible to compare any two
parts side-by-side at will? If the code is dis-
persed, is it at least possible to know in what
order to read it?

Visibility and
juxtaposability

Figure 8. Cognitive Dimensions (taken from Peyton Jones et al.
2003)

then this does not affect the behavior of non-dependent parts of
the program.

Viscosity: MashMaker’s support for user-defined functions, au-
tomatic synchronization of property definitions across multiple
children, and its general preference for linking of data rather
than copying, make it easy to make widespread changes.

Visibility and Juxtaposability: Unlike conventional program-
ming languages, MashMaker juxtaposes program and data to-
gether, so the programmer can easily see the effects of evaluat-
ing their expressions. While MashMaker does not allow one to
view multiple forms or multiple view panels in the same win-
dow, MashMaker does allow one to view the same data store
with multiple browser windows, allowing one to put arbitrary
information side-by-side.

Based on this analysis, and also our personal experiences using
MashMaker, we believe that our design is fundamentally sound.
However, in order to demonstrate this objectively, we need to per-
form a proper user study, and indeed we intend to do this in the near
future.

5. Related Work

In this section, we explain how MashMaker relates to previous
work on Mashup creation and end-user programming in general.

In prior work, we described the basic MashMaker tool from a
database angle (Ennals and Garofalakis 2007).

5.1 Mashup Creation Tools

Mashups are an increasingly hot topic, and thus there have been
many efforts to simplify their creation. Relative to MashMaker,
these previous tools generally fall into two groups: those which
are easy to use, but can only create a limited family of mashups;
and those which are relatively difficult to use, but can create a wide
range of mashups.

www.manaraa.com

Google MyMaps '° and MapCruncher '' make it easy for end
users to create mashups involving maps. Swivel.com makes it very
easy for end users to create graph mashups from multiple data
tables. However, while each of these tools is easy to use, and
excellent at producing mashups of a specific type, none of them
is as general purpose as MashMaker.

Yahoo Pipes 2 is a powerful tool that allows users to process
data from RSS feeds. While, at the time of writing, the small
set of operations available in Pipes makes it less flexible than
MashMaker, it seems likely that the tool will be extended to give it
equivalent expressive power. The key difference between Pipes and
MashMaker is that, unlike MashMaker, pipes presents the program
as an explicit graphical dataflow graph, rather than mixing it with
the data being browsed.

Marmite (Wong and Hong 2006) takes a pipeline-based ap-
proach, similar to Apple’s Automator '*. The data from a web site
is routed through a sequence of pipeline stages, each of which is
configurable, and can produce data of a different type. Like Yahoo
Pipes, the program is separated from the data and presented as a
graph, rather than being embedded in the data like a spreadsheet.
Like MashMaker, Marmite will automatically suggest operations to
apply to data. Unlike MashMaker, these suggestions are based on
the type of the data (similar to Jungloids (Mandelin et al. 2005)),
rather than based on the behavior of previous users. Anthracite '
is similar to Marmite, but requires that the user be familiar with
complex concepts such as HTML and regular expressions.

Creo (Faaborg and Lieberman 2006) augments web pages with
additional links that can obtain additional information about items
on a web page. Like MashMaker, Creo will automatically make
suggestions and can learn by example from things that users do
with their data. Unlike MashMaker, Creo is limited to adding addi-
tional hyperlinks to web pages and cannot perform bulk data pro-
cessing tasks.

Google Mashup Editor, Plagger.org, Ning.com, Javascript Dataflow

Architecture (Lim and Lucas 2006), and Web Mashup Scripting
Language (Sabbouh et al. 2007) are powerful tools for creating
mashups, but they require that the user write code.

ClearSpring.com, Widsets.com, WidgetBox.com, and Apple’s
Dashboard ' allow users to write small graphical web widgets
and then lay them out together on a screen. DataMashups.com
additionally allows users to connect these widgets together (e.g.
the output of this widget is the input to that widget), but complex
tasks require considerable programmer skill.

HunterGatherer (Schraefel et al. 2002) and Internet Scrap-
book (Sugiura and Koseki 1998) allow users to extract parts of
multiple web sites and composite them together, but are not able to
perform complex processing on these sites and extract collections
of data.

Like MashMaker, C3W (Fujima et al. 2004) uses a spreadsheet
metaphor. C3W uses a standard flat two-dimensional spreadsheet
to connect web sites together. If a user defines values for a web
site’s input cells, then it will produce results in its output cells,
clipped from the web page. Unlike MashMaker, C3W uses a flat
two dimensional grid, rather than a tree. This prevents one writing
mashups that produce nested data, such as producing a list of
restaurants for each of several apartments.

Ohttp://maps.google.com
11http://research.microsoft.com/mapcruncher
2nttp://pipes.yahoo.com
Bhttp://www.apple.com/
Yhttp://www.metafly.com/products/anthracite
Bhttp://wuw.apple.com/

TreeSheet (Leonard 2004) represents data as an XML tree, but
unlike MashMaker, programming is done using imperative scripts,
rather than functional overlays.

Within the database community, SEMEX (Cai et al. 2005) and
DataSpaces (Franklin et al. 2005) have looked at data-integration —
how to get transform various data sources into a suitable structure
so that they can be combined with queries.

5.2 End-User Programming Tools

MashMaker also bears some similarity to a number of end-user pro-
gramming tools that have not been used for creating web mashups:

Programmable Structured Documents (PSDs) (Takeichi et al.
2003; Hu et al. 2004; Liu et al. 2005) allow one to extend a stan-
dard XML document by embedding elements in the tree that are
computed from other elements. An expression defining an XML
node can refer to other nodes using XPath expressions and then pro-
cess the nodes using arbitrary Haskell functions. Like MashMaker,
PSDs are based on a functional language (in this case Haskell) and
are evaluated lazily. Unlike MashMaker PSDs deal with static XML
documents, rather than live data. Indeed, since PSDs include ex-
pressions directly in a document, rather that overlaying changes on
top of generated data in a way that can be automatically re-applied,
they could not be used to add additional properties to live data with-
out changes to the model (Section 3.6).

Subtext (Edwards 2005) is a programming tool that allows one
to look at a program together with the results of its evaluation. In
Subtext, every node in the data tree corresponds to the execution of
a single program line with specific data and is annotated with the
value produced. Function calls are expanded as subtrees and func-
tion definitions contain example arguments that the programmer
can adjust to interactively see how their program will behave. Like
MashMaker, subtext allows programmers to easily see how their
program will behave when applied to particular arguments. Unlike
MashMaker, the Subtext interface is program-centric, rather than
data-centric — meaning that data is layered on top of a program,
rather than overlaying a program on top of data.

MashMaker’s function creation system is influenced by the
work of Peyton Jones et al. (2003) in extending Microsoft Excel to
support user-defined functions. Like MashMaker, they allow one
to define a new function by selecting a result cell and then using a
graphical interface to specify which other cells are arguments.

MashMaker’s suggestion system is influenced by Jungloids (Man-
delin et al. 2005) and Google Suggest '®. Like Jungloids, Mash-
Maker suggests operations that are appropriate to the data one has
at hand. Like Google Suggest, MashMaker learns from the behav-
ior of other users.

More generally, MashMaker draws on past work on Program-
ming by Example (Cypher et al. 1993; Lieberman 2001), and pre-
vious work on programming approaches for beginners (Kelleher
and Pausch 2005).

6. Conclusions

We have presented MashMaker, a tool that allows end-users to
easily create web mashups. While MashMaker is, at its core, a
functional language, it contains a number of deviations from the
standard functional paradigm. By taking ideas from such popular
tools as file systems, spreadsheets, and web browsers, we have
produced a tool that we believe is well suited to the task of mashup
creation.

This project is interesting as a programming language research
project both because it approaches an application domain for which
programming languages have not historically been seen as the solu-
tion, and also because, in the process of fitting our language to this

onttp://1abs.google.com/suggest/

www.manaraa.com

domain, we have produced a language that has many differences
from previous functional languages.

We have implemented MashMaker as an AJAX web applica-
tion, currently made available within our organization as part of
a closed beta program. We plan to make it publically available in
the near future. In the long term, the success of MashMaker will
be judged based on the extent to which real users adopt it, and the
scale of the benefit they are able to obtain from it.

For more information on MashMaker, and access to the public
beta when it opens, please go to the following url:

http://berkeley.intel-research.net/rennals/mashmaker/

mashmaker.html

Acknowledgments

This work has benefited from the input of many people. Particular
thanks should go to Minos Garofalakis, Eric Paulos, and Ian Smith.

References

Alan F. Blackwell, Carol Britton, Anna Louise Cox, Thomas R. G. Green,
Corin A. Gurr, Gada F. Kadoda, Maria Kutar, Martin Loomes, Chrysto-
pher L. Nehaniv, Marian Petre, Chris Roast, Chris Roe, Allan Wong,
and Richard M. Young. Cognitive dimensions of notations: Design tools
for cognitive technology. In CT '01: Proceedings of the 4th Interna-
tional Conference on Cognitive Technology, pages 325-341, London,
UK, 2001. Springer-Verlag. ISBN 3-540-42406-7.

Yuhan Cai, Xin Luna Dong, Alon Halevy, Jing Michelle Liu, and Jayant
Madhavan. Personal information management with SEMEX. In SIG-
MOD °05: Proceedings of the 2005 ACM SIGMOD international con-
ference on Management of data, pages 921-923, New York, NY, USA,
2005. ACM Press. ISBN 1-59593-060-4. doi: http://doi.acm.org/10.
1145/1066157.1066289.

Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman,
David Maulsby, Brad A. Myers, and Alan Turransky, editors. Watch
what I do: programming by demonstration. MIT Press, Cambridge, MA,
USA, 1993. ISBN 0-262-03213-9.

Jonathan Edwards. Subtext: uncovering the simplicity of programming. In
OOPSLA °05: Proceedings of the 20th annual ACM SIGPLAN confer-
ence on Object oriented programming, systems, languages, and applica-
tions, pages 505-518, New York, NY, USA, 2005. ACM Press. ISBN
1-59593-031-0. doi: http://doi.acm.org/10.1145/1094811.1094851.

Robert Ennals and Minos Garofalakis. Mashmaker : Mashups for the
masses (demo paper). In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data (SIGMOD’2007),
2007.

Alexander Faaborg and Henry Lieberman. A goal-oriented web browser. In
CHI ’06: Proceedings of the SIGCHI conference on Human Factors in
computing systems, pages 751-760, New York, NY, USA, 2006. ACM
Press. ISBN 1-59593-372-7. doi: http://doi.acm.org/10.1145/1124772.
1124883.

Michael Franklin, Alan Halevy, and David Maier. From databases to datas-
paces: A new abstraction for information management. In SIGMOD
Record, 2005.

Jun Fujima, Aran Lunzer, Kasper Hornb&k, and Yuzuru Tanaka. Clip, con-
nect, clone: combining application elements to build custom interfaces
for information access. In UIST ’04: Proceedings of the 17th annual
ACM symposium on User interface software and technology, pages 175—
184, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-957-8. doi:
http://doi.acm.org/10.1145/1029632.1029664.

Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable
editor for developing structured documents based on bidirectional trans-
formations. In PEPM ’04: Proceedings of the 2004 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manip-
ulation, pages 178—189, New York, NY, USA, 2004. ACM Press. ISBN
1-58113-835-0. doi: http://doi.acm.org/10.1145/1014007.1014025.

Caitlin Kelleher and Randy Pausch. Lowering the barriers to programming:
A taxonomy of programming environments and languages for novice
programmers. ACM Comput. Surv., 37(2):83-137, 2005. ISSN 0360-
0300. doi: http://doi.acm.org/10.1145/1089733.1089734.

Thomas Leonard. Tree-Sheets and Structured Documents. PhD thesis,
University of Southampton, 2004.

Henry Lieberman. Your wish is my command: programming by example.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.
ISBN 1-55860-688-2.

Seung Chan Slim Lim and Peter Lucas. Jda: a step towards large-scale
reuse on the web. In OOPSLA ’06: Companion to the 21st ACM SIG-
PLAN conference on Object-oriented programming systems, languages,
and applications, pages 586—-601, New York, NY, USA, 2006. ACM
Press. ISBN 1-59593-491-X. doi: http://doi.acm.org/10.1145/1176617.
1176631.

Dongxi Liu, Zhenjiang Hu, and Masato Takeichi. An environment for main-
taining computation dependency in XML documents. In DocEng 05:
Proceedings of the 2005 ACM symposium on Document engineering,
pages 42-51, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-
240-2. doi: http://doi.acm.org/10.1145/1096601.1096616.

David Mandelin, Lin Xu, Rastislav Bodik, and Doug Kimelman. Jungloid
mining: helping to navigate the API jungle. In PLDI ’05: Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design
and implementation, pages 48-61, New York, NY, USA, 2005. ACM
Press. ISBN 1-59593-056-6. doi: http://doi.acm.org/10.1145/1065010.
1065018.

Simon Peyton Jones. Wearing the hair shirt: a retrospective on Haskell
(invited talk). In ACM SIGPLAN Conferenge on Principles of Program-
ming Languages (POPL’03), 2003a.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries: the
Revised Report. Cambridge University Press, may 2003b.

Simon Peyton Jones, Alan Blackwell, and Margaret Burnett. A user-centred
approach to functions in Excel. In ICFP ’03: Proceedings of the eighth
ACM SIGPLAN international conference on Functional programming,
pages 165-176, New York, NY, USA, 2003. ACM Press. ISBN 1-58113-
756-7. doi: http://doi.acm.org/10.1145/944705.944721.

Marwan Sabbouh, Jeff Higginson, Danny Gagne, and Salim Semy. Web
mashup scripting language (poster). In 16th International World Wide
Web Conference, 2007.

M. C. Schraefel, Daniel Wigdor, Yuxiang Zhu, and David Modjeska. Hunter
gatherer: within-web-page collection making. In CHI '02: CHI ’02
extended abstracts on Human factors in computing systems, pages 826—
827, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-454-1. doi:
http://doi.acm.org/10.1145/506443.506617.

Michael Schrenk. Webbots, Spiders, and Screen Scrapers. No Starch Press,
2007.

Atsushi Sugiura and Yoshiyuki Koseki. Internet scrapbook: automating web
browsing tasks by demonstration. In UIST "98: Proceedings of the 11th
annual ACM symposium on User interface software and technology,
pages 9-18, New York, NY, USA, 1998. ACM Press. ISBN 1-58113-
034-1. doi: http://doi.acm.org/10.1145/288392.288395.

Masato Takeichi, Zhenjiang Hu, Kazuhiko Kakehi, Yashushi Hayashi, Shin-
Cheng Mu, and Keisuke Nakano. TreeCalc: towards programmable
structured documents. In Japan Society for Software Science and Tech-
nology, 2003.

Jeffrey Wong and Jason Hong. Marmite: end-user programming for the
web. In CHI ’06: CHI '06 extended abstracts on Human factors in
computing systems, pages 1541-1546, New York, NY, USA, 2006. ACM
Press. ISBN 1-59593-298-4. doi: http://doi.acm.org/10.1145/1125451.
1125733.

www.manaraa.com

